Semilinear Mixed Problems on Hilbert Complexes and Their Numerical Approximation

نویسندگان

  • Michael J. Holst
  • Ari Stern
چکیده

Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281–354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold–Falk–Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace–Beltrami operator on 2and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142–155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805–827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold–Falk–Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces. Date: October 28, 2010. 2010 Mathematics Subject Classification. Primary: 65N30; Secondary: 35J91, 47H30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Exterior Calculus for Evolution Problems

ABSTRACT. Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281–354] showed that mixed variational problems, and their numerical approximation by mixed methods, could be most completely understood using the ideas and tools of Hilbert complexes. This led to the development of the Finite Element Exterior Calculus (FEEC) for a large class of linear elliptic problems. More recently, Hols...

متن کامل

A Posteriori Error Estimates for Semilinear Boundary Control Problems

In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Finite Element Exterior Calculus for Parabolic Evolution Problems on Riemannian Hypersurfaces

Over the last ten years, the Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analysis. The basic approach in FEEC, pioneered by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these problems in the setting of Hilbert complexes, l...

متن کامل

Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems

We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The analysis of the approximate control problems is carried out. The uniform convergence of discretized controls to optimal controls is proven under natural assumptions by taking piecewise constant controls. Finally, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012